

$\begin{aligned} & \text { c} \\ & \text { coult } \end{aligned}$	Fault categories	Possible reasons for faut	Actions
E009	Output phase loss	$\underset{\text { Any of Phase } U, V \text { and } W \text { cannot be }}{\text { detected }}$	$\begin{array}{\|l\|} \hline \text { Check the drives output } \\ \text { wiring } \\ \text { Check the cable and the } \\ \text { motor } \end{array}$
E010	Protections of IGBT act	Short-circuit among 3-phase output or line-to-ground short circuit	Rewiring, please make sure the insulation of motor is good
		Instantaneous over-current	Refere to E001-E003
		Vent is obstructed of fan does not work	Clean the vent or replace the fan
		Over-temperature	Lower the ambient temperature
		Wires or connectors of control board are loose are loose	Check and rewiring
		Current waveform distorted due to output phase los	Check the wiring
		Auxiliary power supply is damaged or IGBT driving voltage is too low	Sek service
		Short-circuit of IGBT bridge	Seek service
		Control board is abnormal	Sek service
E011	IGBT module's overheat\qquad	Ambient over-temperature	Lower the ambient temperature
		Vent is obstructed	Clean the vent
		Fan does not work	Replace the fan
		IGBT module is abnormal	Sek service
E012	Rectifier's heatsink	Ambient over-temperature	Lower the ambient temperature
		Vent is obstructed	Clean the vent
		Fan does not work	Replace the fan
E013	Driveoverload	Parameters of motor are wrong	Auto-tune the parameters of motor
		Too heavy load	$\begin{aligned} & \text { Select the dirive with bigger } \\ & \text { power } \end{aligned}$
		DC injection braking current is too big	Reduce the DC injection braking current and prolong the braking time
		Too short acceleration time	Prolong acelelation time
		Low AC supply volage	Check the AC supply volage
		Improper V/F curve	Adjust V/F curve or torque boost value
E014	Motorover-load	Improper motor's overload protection threshold	Modify the motor's overload protection threshold.
		Motor is locked or load suddenly become too big	Check the load
		Common motor has operated with heavy load at low speed for a long time.	Use a special motor if the motor is required to operat for a long time.
		Low AC supply volage	Check the AC supply volage
		Improper V/F curve	Set V/F curve and torque
E015	$\begin{gathered} \text { extermal } \\ \text { equipment } \\ \text { fails } \end{gathered}$	Terminal used for stopping the drive in emergent status is closed	Disconnect the terminal if the external fault is cleared
E016	$\begin{gathered} \text { EEPROM } \\ \text { RRW } \\ \text { fault } \\ \hline \end{gathered}$	R/W fault of control parameters	Press 5 STOPRRST to reset, seek service
E017	Communicatio n timeout	The setting time is to shot	Set b3.02 to 0, it means do not detection
E018	Contactor not closed	Low AC supply volage	Check the AC supply volage
		Contactor damaged	Replace the contactor in main circuit and seek service
		Soft start resistor is damaged	Replace the soft start resistor and seek service
		Control circuit is damaged	Sek service
		Input phase loss	Check the wiring of R, S, T.
E019	$\begin{gathered} \text { Current } \\ \text { delection } \\ \text { circuit } \\ \text { fails } \end{gathered}$	Wires or connectors of control board are loose	Check and re-wire
		Auxiliary power supply is damaged	Sek service
		Hall sensor i d damaged	Seek service
		Amplifyng circuit is abnormal	Sek service
E020	$\underset{\substack{\text { System } \\ \text { interference }}}{ }$	Terrible interference	$\begin{aligned} & \text { Press STOP/RSTK.ky to resen } \\ & \text { or add a power filter in front } \end{aligned}$ of power supply input
		DSP in control board read/write by mistake	Press STOP/RST key or
E023	$\begin{gathered} \text { Parameter } \\ \text { copy } \end{gathered}$	Panel's parameters are not complete or the	Update the panel's parameters and version again.

Fautt code	Fault categories	Possible reasons for faut	Actions
	error	version of the parameters are not the same as that of the main control board	First set b4.04 to 1 to upload the parameters and then set the parameters.
		Panel's EEPROM is damaged	Sek service
${ }^{\text {E024 }}$	$\begin{aligned} & \text { Auto-tuning } \\ & \text { fault } \end{aligned}$	Improper settings of parameters on the nameplate	Set the parameters correctly according to the nameplate
		Prohibiting contra Auto-turning during rollback	Cancel prohibiting rollback
			Check the motor's wiring
		Overtime of auto-tuning	$\begin{aligned} & \text { Check the set value of } \\ & \text { A0.10(uper limiting } \\ & \text { frequency), make sure if it is } \\ & \text { lowert tan the reted } \\ & \text { frequency or not } \end{aligned}$
E026	The load of drive is los	The load is lost or reduce	Check the situation of the load
E027	Brake unit	Brake tube is broken	Seek service

$\begin{aligned} & \text { Functi } \\ & \text { on } \\ & \text { code } \\ & \hline \end{aligned}$	Name	Descriptions	Unit	$\begin{aligned} & \text { Factor } \\ & \text { y } \\ & \text { setting } \end{aligned}$	$\begin{array}{\|c} \hline \mathrm{M} \\ \text { odi } \\ \mathrm{fi} \end{array}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Seting } \\ \text { range } \end{array} \end{array}$
Group A0: Basic operating paramelers						
${ }^{\text {A0.00 }}$	User password	0: No password protection. Others: Password protection.	1	${ }^{0}$	-	0 -FFFF
${ }^{\text {A0.01 }}$	Control mode	0:reserved 1: reserved 2: V/F contro	1	0	\times	0-2
${ }^{\text {A0.02 }}$	$\begin{aligned} & \text { Main reference } \\ & \text { frequency } \\ & \text { selector } \end{aligned}$		${ }^{1}$	${ }^{0}$	-	0-5
${ }^{\text {A0.03 }}$	Set the freauncy digital mode	A0.11-A0.10	0.01 H	50.00	-	0-3000
A0.04	Methods of inputtingoper ng comman	0: Panel control 1: Terminana control 2: Communication control a	${ }^{1}$	${ }^{0}$	-	0-2
${ }^{\text {A0.05 }}$	Set running	0: Forward 1: Reverse	${ }^{1}$	${ }^{0}$	-	0-1
${ }^{\text {A0.06 }}$	Acc time 1	0.0-6000.0	0.15	6.0 s	-	${ }^{0-60000}$
A0.07	Dec iime 1	0.0-6000.0	0.15	6.0s	\bigcirc	0.60000
${ }^{\text {A0.08 }}$	Max. output requency	$5 \mathrm{HHz} \sim 300.00 \mathrm{~Hz}$	${ }^{0.01 \mathrm{H}}$	50.00	\times	0-30000
A0.09	Max. output voltage	$0 \sim 480$	${ }^{1 \mathrm{~V}}$	$\begin{aligned} & \hline \text { VFD's } \\ & \text { rated } \\ & \text { values } \\ & \hline \end{aligned}$	\times	0-480
${ }^{\text {A0. }} 10$	Upper limit of frequency	A0.11-A0.08	$\begin{array}{\|l\|l} \hline 0.01 \mathrm{H} \\ z \\ \hline \end{array}$	50.00	-	0-30000
${ }^{\text {A0.11 }}$	Lower limit of frequency	0.00-A0.10	${ }_{2}^{0.01 \mathrm{H}}$	0.00	-	0-30000
${ }^{\text {A0. } 12}$	Basic operating frecuency	$0.00-300.00 \mathrm{~Hz}$	${ }_{2}^{0.01 \mathrm{H}}$	50.00	\bigcirc	0-30000
${ }^{\text {al }}$. 00	Starting mode	Group A1: Start and stop O: Statr from the starting frequency 1: Brake first and then start 2: Reserved 2.	$\frac{1}{1}$	${ }^{0}$	${ }^{\times}$	0-2
${ }^{\text {Al } 1.01}$	Starting frequency	${ }^{0.000-60.00 \mathrm{~Hz}}$	$\begin{array}{\|l\|l} \hline 0.01 \mathrm{i} \\ z_{2} \end{array}$	$\begin{array}{\|l\|} \hline 0.00 \mathrm{H} \\ \mathrm{z} \end{array}$	-	0-6000
${ }^{\text {A1.02 }}$	Holding time of starting frequency	0.00-10.00s	0.01 s	0.00 s	-	0~1000
${ }^{\text {A1 }} 1.3$	$\begin{aligned} & \text { DC injection } \\ & \text { braking curren } \end{aligned}$ at start	$0.0 \% \sim 100.0 \%$ drive's rated current	0.1\%	0.0\%	-	0-1000
${ }^{\text {A1 }}$. 4	DC injection braking time at start	0.00 (No action) $0.01-30.00 \mathrm{~s}$	0.01 s	0.00 s	-	0-3000
${ }^{\text {A1.05 }}$	Stopping mode		${ }^{1}$	${ }^{0}$	\times	0~2
${ }^{\text {A1.06 }}$	DC injection braking initial frequency a stop	$0.00-60.00 \mathrm{~Hz}$	${ }_{z}^{0.01 \mathrm{H}}$	${ }^{0.00 \mathrm{H}}$ z	-	0-6000
${ }^{\text {A1.07 }}$	Injection braking waiting time a stop	0.00-10.00s	${ }^{0.015}$	0.00 s	-	0-1000
${ }^{\text {A1.08 }}$	DC injection braking curren at stop	$0.0 \% \sim 100.0 \%$ drive's rated current	0.1\%	0.0\%	-	0~1000
A1.09	DC injection	0.0 (No action)	0.01 s	0.00 s	\bigcirc	0-3000

Functi on cod	Name	Descripions	Unit	Factor y	$\mathrm{m}_{\text {odi }}^{\mathrm{m}} \mathrm{f}$	Seting $\begin{aligned} & \text { selunge } \\ & \text { range } \end{aligned}$
${ }^{\text {A4.20 }}$	Over_Commtat	0: disable	1	0	x	$0 \sim 1$
A4.21	Comm ACR-P	0.65535	1	100	。	0.65535
A4.22	Comm ACR-I	0 065335		100		$0-65335$
A4.23	Output V ratio	0.65535	1	1030		0.65
${ }^{\text {A } 4.24}$	Output I ratio	$0-65335$	1	1000	-	$0-65535$
Group A5: reserved						
$\begin{aligned} & \text { A6.00- } \\ & \text { A6.03 } \end{aligned}$	Multi-function terninal X1-×4	0: No function1: Forward 2: Reverse 4: Revers jog operation 4: Reverse jog operation 6: External RESET signal input 7: External fault signal input 8: External interrupt signal input 9: Drive operation prohibit 10: External stop comman 11: DC injection braking 1. DC inj command 12: Coast to stop 13: Frequency ramp up (UP) 14: Frequency ramp down (DN) (DN) 15: Switch to panel control 16: Switch to terminal control 17: Switch to communication control mode 18: Main reference frequency via AI 27: Preset frequency 1 28: Preset frequency 2 29: Preset frequency 3 30: Preset frequency 4 31: Acc/Dec time 1 32: Acc/Dec time 2 33: Multiple close-loop 34: Multiple close-loop reference selection 2 35: Multiple close-loop 35: Multiple close-loop reference selection 3 36: Multiple close-loop reference selection 4 37: Forward prohibit 38: Reverse prohibit 39: Acc/Dec prohibit 40: Process close-loop prohibit 42: Main frequency switch to 43: PLC pause 44: PLC prohibit 45: PLC stop memory clear 46: Swing input 47: Swing reset 48~49:Reserved 50: Timer 1 start 51: Timer 2 start 53: Counter input Others: Reserved		0	×	$0 \sim 54$
$\begin{aligned} & \text { A6.04 } \\ & \text { A6.05 } \end{aligned}$	reserved					
A6.08	Terminal filter	0.500 ms	1	10	-	0.500
${ }^{\text {A6.09 }}$	$\begin{aligned} & \text { Terminal } \\ & \text { control mode } \end{aligned}$ selection		1	0	\times	0-3
$\begin{aligned} & \text { A6.10 } \\ & \text { A6.11 } \\ & \text { A6. } 12 \end{aligned}$	reserved					
${ }^{\text {A6. }} 13$	$\begin{aligned} & \text { Input terminal's } \\ & \text { positive and } \\ & \text { negative logic } \end{aligned}$		1	${ }^{00}$	-	0-FFH
$\begin{aligned} & \text { A6.14 } \\ & \text { a6.15 } \end{aligned}$	reserved		1	0	\times	0-50
A6.16	Output $\begin{aligned} & \text { functions } \\ & \text { relay R1 } \end{aligned}$ relay R	0: Running signal(RUN) 1: frequency arriving signal(FAR) threshold	1	15	×	0,50

$\begin{array}{\|l} \hline \begin{array}{l} \text { Functi } \\ \text { on } \\ \text { code } \end{array} \end{array}$	Name	Descripions	Unit	$\begin{array}{\|l\|l} \hline \begin{array}{l} \text { Factor } \\ \text { yeting } \\ \text { setting } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{M} \\ \text { odi } \\ \mathrm{f} . \end{array}$	$\begin{aligned} & \text { Seting } \\ & \text { range } \end{aligned}$
A6.18	$\begin{aligned} & \text { Outut } \\ & \text { Suminals } \\ & \text { pesive and } \\ & \text { pegative logic } \end{aligned}$	Binary setting 0 : Terminal is enabled if it is correspond common terminal, and disabled if it is disconnected 1: Terminal is disabled if it is connected to corresponding common terminal, and enable if it is disconnected Unit2 splace of LED: BIT2: R1 Ten's place of LED: Reserved	1	0 	-	0~1FH
${ }^{\text {A6. }} 19$	Frequency arriving signal (FAR)	0.00-300.00Hz	${ }^{0.01 \mathrm{H}}$	$\begin{array}{\|l\|l\|} \hline 2.50 \mathrm{H} \\ \hline \end{array}$	-	0.30000
A6.20	FDT1 level	$0.00-300.00 \mathrm{~Hz}$	${ }^{0.01 \mathrm{H}}$	50.00	-	0.30000
${ }^{\text {A6.21 }}$	FDTI lag	$0.00-300.00 \mathrm{~Hz}$	0.01 H	${ }^{1.000}$	-	0-3000
${ }^{\text {A6.22 }}$	FDT2 level	$0.00-300.00 \mathrm{~Hz}$	${ }_{2}^{0.01 \mathrm{H}}$	$\begin{aligned} & 25.00 \\ & { }_{2}^{2} 7 \end{aligned}$	-	$0-3000$
${ }^{\text {A6.23 }}$	FDT2 lag	$0.00-300.00 \mathrm{~Hz}$	${ }^{0.01 \mathrm{H}}$	1.00H	-	0.3000
${ }^{\text {A6.24 }}$	$\begin{aligned} & \begin{array}{l} \text { Virtual terminal } \\ \text { setting } \end{array} \end{aligned}$	Binary setting 0: Disable 1: Enable Unit's place of LED: Ten's place of L ED Reserved	1	00	-	0-FFH
$\begin{aligned} & \text { A6.282- } \\ & A_{6.43} \end{aligned}$	reserved					
A6.44	Setting value of timer 1	0.0-10.0s	${ }^{0.15}$	0.0	-	${ }_{1 \sim 100}$
${ }^{\text {A6.45 }}$	Setting value of	0-100s	1 s	0	-	00
${ }^{\text {A6.46 }}$	$\begin{aligned} & \text { Target value of } \\ & \text { counter } \end{aligned}$	$0-6535$	${ }^{1}$	100	-	$0-6535$
${ }^{\text {A6.47 }}$	Intermediate value of counter	${ }^{0-65535}$	1	50	-	${ }^{0-65535}$
A8.00	$\begin{aligned} & \text { Protective } \\ & \text { action of relay } \end{aligned}$		$\frac{\text { ers }}{1}$	0000	\times	$0-1111 \mathrm{H}$
A8.01	Fault masking selection 1	Unit's place of LED: Communication fault masking selection Ten's place of LED Relay faultmasking selection Hundred's place of LED	1	2000	\times	0-2222H

$\begin{array}{\|l} \hline \begin{array}{l} \text { Functi } \\ \text { on } \\ \text { code } \end{array} \\ \hline \end{array}$	Name	Descripions	Unit	$\begin{array}{\|l} \hline \begin{array}{l} \text { factor } \\ \text { y } \\ \text { setting } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{M} \\ & \text { odi } \\ & \mathrm{fi} \\ & \hline \end{aligned}$	Seting range
		EEPROMfault masking selection Thousand's place of LED: Reserved 0 :Disable.Stop when fault happen 1:Disable.Continue operating when fault happen 2:Enable				
A8.02	Fault masking selection 2	Unit's place of LED: Open phase fault masking selection of input Tents place of LED: Open phase fault masking	1	00	\times	$0 \sim 22 \mathrm{H}$
A8.03	Motor overload protection mode selection	:Common mode (with low speed compensation) 2: Variable frequency motor (without low speed compensation)	1	1	*	0~2
A8.04	Auto rese times	0 : No function $1 \sim 100$: Auto reset time Note: The IGBT protection (E010) and external equipment fault (E015) cannot be reset automatically	${ }^{1}$	${ }^{0}$	\times	0-100
A8.05	Reset interval	2.0-20.0stlime	0.15	5.0 s	\times	20-200
${ }^{88.06}$	Fault locking function selection.	0:Disable. 1: Enable.	${ }^{1}$	0	\times	$0 \sim 1$
Group b0:Motor parameters						
$\frac{b 0.00}{b-0.01}$	${ }^{\text {Rated power }}$ Rated volase	${ }^{0.40-999.9 \mathrm{KW}} 0$	${ }^{0.1}$	${ }_{0}^{0}$	$\stackrel{\times}{\times}$	$\begin{aligned} & \hline 4 \sim 9999 \\ & \hline 0 \sim 999 \end{aligned}$
b0.02	Rated current	0.1-999.9A	${ }^{0.1 A}$	$\substack{\text { Depen } \\ \text { do } \\ \text { on } \\ \text { drives } \\ \text { model }}$	\times	1-9999
b0.03	$\begin{aligned} & \text { Rated } \\ & \text { frequency } \end{aligned}$	1.00-1000.00Hz	${ }_{z}^{0.01 \mathrm{H}}$	$\begin{array}{\|l\|l} \hline \text { Depen } \\ \text { depe } \\ \text { on } \\ \text { drives } \\ \text { model } \end{array}$	\times	$\begin{array}{\|l\|l\|} \hline 100-300 \\ 00 \end{array}$
b0.04	Number of motor	2-24	1	4	\times	2-24
b0.05	Rated speed	0-60000RPM	${ }^{1 \text { RPM }}$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { I440R } \\ \text { PM } \end{array} \\ \hline \end{array}$	\times	0-60
b0.06	$\begin{aligned} & \text { Resistance of } \\ & \text { stator } \% \mathrm{R} 1 \end{aligned}$	0.00\% 050.00%	0.01\%	Depen don on dirves model mol	\times	0-5000
b0.07	Leakage inductance \% Xl	0.00\% 20.000%	0.01\%	$\begin{array}{\|l\|l} \hline \text { Depen } \\ \text { d } \\ \text { on } \\ \text { drives } \\ \text { model } \end{array}$	\times	0.5000
b0.08	Resistance of rotor 2	0.00\% $0.50 .00 \%$	0.01\%	$\begin{array}{\|l\|l} \hline \text { Depen } \\ \text { of } \\ \text { on } \\ \text { drives } \\ \text { model } \end{array}$	\times	0.5000
b0.09	$\begin{aligned} & \text { Exciting } \\ & \text { inductance } \% \mathrm{X} \\ & \mathrm{~m} \end{aligned}$	0.0\% 2000.0%	0.1\%	Depen don on drives model mol	\times	0-20000
b0.10	Current without load I0	0.1-999.9A	0.1 A	$\begin{array}{\|l\|l} \hline \text { Depen } \\ \text { d } \\ \text { on } \\ \text { drives } \\ \text { model } \\ \hline \end{array}$	\times	1-9999
b0.11	Auto-tuning	0: Auto-tuning is disabled 1. Stationary auto-tuning (Start auto-tunang to standtandsill motr) 2: Rotataing auto-tuning I2	1	${ }^{0}$	\times	0,3
b0.12	Motor's Nourload protection coefficien	20.0\% - 110.0\%	0.1\%	$\begin{array}{\|l\|} \hline 100.0 \\ \sigma_{6} \end{array}$	\times	$\begin{array}{\|l\|l} \hline 200-110 \end{array}$
b0.13	$\begin{aligned} & \text { Oscillation } \\ & \text { inhibition } \\ & \text { coefficient } \end{aligned}$	0-255	${ }^{1}$	10	-	0-255
b1.00	$\begin{aligned} & \text { V/F curve } \\ & \text { seeting } \end{aligned}$		1	0	\times	0-3

13							14						
$\begin{array}{\|l} \hline \begin{array}{l} \text { Funcii } \\ \text { on } \\ \text { code } \end{array} \\ \hline \end{array}$	Name	Descripions	Unit	$\begin{aligned} & \text { Factor } \\ & \text { y } \\ & \text { setting } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M } \\ \text { odi } \\ \text { f. } \end{array}$	Setting range	$\begin{array}{\|l} \hline \begin{array}{l} \text { Funcii } \\ \text { on } \\ \text { code } \end{array} \\ \hline \end{array}$	Name	Descriptions	Unit	$\begin{aligned} & \text { Factor } \\ & \text { y } \\ & \text { setting } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{M} \\ \text { odi } \\ \text { f. } \end{array}$	Seting range
		0:1-8-2-N format,RTU 1:1-8-1-E format,RTU 2.1-8-1-O format, RTU Hundred's place of LED: wiring mode 0:Direct connection via cable (RS232/485) 1: MODEM (RS232)							BIT0:Bus voltage 1.Speed(R/MiN)(No BIT2:Setting speed(R/MIN) (Flicking, no display at feedback mode) Note: If all the BITs are 0,the drive will display setting				
b3.01	Local address	$0 \sim 127,0$ is the broadcasting address	1	5	\times	-127			frequency at stop, display output frequency at operating				
b3.02	Time threshold for judgingthecommunication status	${ }^{0.0 \sim 1000.0 s}$	${ }^{0.1}$	${ }^{0.05}$	\times	0-10000			and display bus voltage a energy feedback mode.				
							B4.06	Linear speed ratio	0.00-99.99	${ }^{0.01}$	1.00	-	-9999
${ }^{\text {b3. }} 03$	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Delay for } \\ \text { responing to } \\ \text { control PC } \end{array} \\ \hline \end{array}$	$0-1000 \mathrm{~ms}$	1	5ms	\times	0-1000	Group CO:Multisection parameters						
${ }^{\text {b4, }}$, 0			ers				$\begin{array}{\|l\|l\|} \hline 0.00 \sim \\ \text { C0.14 } \\ \hline \end{array}$	$\begin{aligned} & \text { Multi-speed } \\ & \text { from 1~15 } \end{aligned}$	Lower limit of frequency- upper limit of frequency	$\begin{aligned} & \begin{array}{l} 0.01 \mathrm{H} \\ \mathrm{z} \end{array} \\ & \hline \end{aligned}$	5.00 H	-	$0-30000$
	$\begin{aligned} & \text { Key.lock } \\ & \text { Suncoion } \\ & \text { selcection } \end{aligned}$	0 : The keys on the operation panel are not locked, and all the keys are usable 1: The keys on the operation panel are locked, and all the keys are unusable. 2: All the keys except for the multi-functional key are unusable. 3: All the keys except for the 4•All the keys unusable. RUN AND STOP keys are unusable.	1	0	-	0-4	C1.00	Close-loop control function	$\begin{aligned} & \text { Group C1:Process PID para } \\ & \hline \text { 0: Disable1: Enable } \\ & \hline \end{aligned}$	eters	0	*	0-1
							${ }^{\text {C1.01 }}$	Reference channel selection	0: Digital input 1: AI	1	1	-	0-3
							${ }^{2} 1.02$	$\begin{aligned} & \substack{\text { Fenedounck } \\ \text { channel } \\ \text { selection }} \end{aligned}$	0 : AI	1	${ }^{0}$	-	0
							${ }^{\text {C1. }} 03$	Digital setting of reference	$-10.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	${ }^{0.01}$	0.00	-	0-2000
							${ }^{\text {c1. }} 05$	Min reference	$0.0 \% \sim(\mathrm{C} 1.07)$ (Ratio of Min reference to base value of $10 \mathrm{~V} / 20 \mathrm{~mA}$))	0.1\%	0.0\%	-	0~1000
b4.01	Multi-function	Reserved	1	4	-	0-5	${ }^{\text {c1.06 }}$	Feedback valuecorresponding to the Min reference	$0.0 \sim 100.0 \%$ (Ratio of Min reference to base value of $10 \mathrm{~V} / 20 \mathrm{~mA}$)	0.1\%	0.0\%	-	0~1000
b4.02	Parameterprotection	0: All parameters are allowedmodifirig.l: only A.0.03 and b4.02 canbe modifid2: Only $b 4.02$ can be modified.	1	1	-	0-2							
							C1.07	Max reference	(C1.05)~100.0\% (Ratio of Max reference to base value of $10 \mathrm{~V} / 20 \mathrm{~mA}$	0.1\%	${ }_{6}^{100.0}$	-	0-1000
${ }^{\text {b4. }}$. 3	Parameter initialization	0: No operation 1: Clear fault information in memory 2: Restore to factory settings	${ }^{1}$	${ }^{0}$	*	${ }^{0-2}$	C1.08	Feedback value corresponding to the Max referenc	$0.0 \sim 100 \%$ (Ratio of Max reference to base value of $10 \mathrm{~V} / 20 \mathrm{~mA}$)	0.1\%	$\begin{aligned} & 100.0 \\ & { }_{6}^{100} \end{aligned}$	-	0~1000
b4.04	Parameer copy	O: No action 1: parameters upload 2: parameters oowload 3: parameters download (except the parameters related to drive type) Note: Not to upload/download	1	0	\times	0-3	$\mathrm{Cl}^{1.09}$	Proportional gain KP	$0.000-10.000$	0.001	2.000	-	010000
							${ }^{\text {C1. } 10}$	Integral gain Ki	0.000-10.000	0.001	0.100	-	0~10000
							C1.11	Differential gain Kd	${ }^{0.000-10.000}$	0.001	0.100	-	$0-10000$
							${ }^{\text {C1.12 }}$	Sampling cycle T	0.01-50.00s	${ }^{0.015}$	${ }^{0.50}$	-	1.5000
b4.05	$\begin{aligned} & \substack{\text { pisplay } \\ \text { paraneters } \\ \text { selection }} \end{aligned}$	Binary setting: 0: No display1: Display Unit's place of LED: BIT0: Output frequency(No display at stop.Display power frequency at energy feedback mode) BIT1:S (Flicking.No display at energy feedback mode) display at stop.Display power frequency at energy feedback mode) display at stop.Display power frequency at energy feedback mode) Ten's place of LED: BIT0: AI BIT3: DI terminal status Hundred's place of LED: display at stop and energy feedback mode) mode) BIT1:Output torque(No display at stop and energy feedback mode) BIT2:Analog close-loop (\%)(No display at feedback mode) BIT3:Analog close-loop (\%)(Flicking, no display at feedback mode) Thousand's place of LED:	1	1007H	-	$\begin{aligned} & \begin{array}{l} 0 \sim 7 \text { FFF } \\ \mathrm{H} \end{array} \end{aligned}$	C11.13 C1.14	${ }_{\text {Outpu filler }}$	$0.0 \sim 20.0 \%$ (Corresponding to	${ }_{\text {0, }}^{0.015}$	${ }^{0.0 .05}$	-	${ }_{\text {1 }}^{1-2000}$
							C1.15	$\begin{aligned} & \text { Close-loop } \\ & \text { regulation } \\ & \text { characteristic } \end{aligned}$	$\begin{aligned} & \text { Cose-coop re } \\ & \hline \text { 0: } \mathrm{P} \text { Posive } \\ & \text { 1 Negative } \end{aligned}$	${ }^{1}$	${ }^{0}$	\times	0-1
							C1.16	$\begin{gathered} \text { Integral } \\ \text { revaltan } \\ \text { selection } \end{gathered}$	0 : Stop integral regulation when the frequency reaches the upper and lower limit 1: Continue the integral regulation when the frequency reaches the upper and lower limits	1	0	\times	0-1
							${ }^{\text {C1.17 }}$	$\begin{aligned} & \hline \text { Preset } \\ & \text { close-loop } \\ & \text { frequency } \\ & \hline \end{aligned}$	$0.000-300.00 \mathrm{~Hz}$	${ }_{z}^{0.01 \mathrm{H}}$	$0_{z}^{0.00 \mathrm{H}}$	-	0-3000
							C1.18		0.0-3600.0s	${ }^{0.15}$	${ }^{0.05}$	\times	0.36000
							$\begin{aligned} & \mathrm{C} 1.192 \\ & \mathrm{Cl} 1.23 \end{aligned}$	Preset close-loop reference 1~15	$-10.00 \mathrm{\sim} \sim 10.00 \mathrm{~V}$	${ }^{0.01 \mathrm{~V}}$	${ }^{0.00 \mathrm{~V}}$	\bigcirc	0-2000
							C1.34	$\begin{aligned} & \hline \text { Close-loop } \\ & \text { output reversal } \\ & \text { selection } \end{aligned}$ selection	0: The close-loop output is negative, the drive will operate at zero frequency 1: The close-loop output is negative and the drive operate reverse	1	0	-	${ }^{0 \sim 1}$
							${ }^{\text {C1 }} 135$	Sleep function selection	0: Disable 1: Enable.	${ }^{1}$	${ }^{0}$	-	0~1
							${ }^{\text {C1.36 }}$	Sleep level	$0.0 \sim 100.0 \%$	0.1\%	50.0\%	-	$0 \sim 1000$
							C1.37	Sleep latency	0.0~6000.0s	0.1s	${ }^{30.05}$	-	¢~
							C1.38	Wake-up level	0.0~100.0\%	0.1\%	50.0\%	-	$0 \sim 1000$
							C2.00	Simple PLC operation	Unit's place of LED: PLC operation mode 0 : No function	1	0000	\times	$0 \sim 1123 \mathrm{H}$

Note: 0 . Can be modified dessword.
x : Cannot be modified during operating;
: Actually detected and cannot be revised,
-: Defaulted by factory and cannot be modified

